
The Art of Defense
How vulnerabilities help shape security features and mitigations in
Android

Nick Kralevich
August 4th, 2016

$ whoami

● Nick Kralevich

● Android Security since December 2009

● Android Platform Security Team Lead

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Agenda

Quick overview of the Android Security Architecture

Vulnerabilities that affected Android and Android’s response

Where do we go from here?

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Android Security Ecosystem

Sandbox &
permissions

Runtime
Security Checks

Verify Apps
Warning

Verify Apps
Consent

Install
Confirmation

Unknown
Sources
Warning

Google Play

Knowledge
PHA or Not

Data
App installs

Install
Source

Google Play Application Analysis

Static
Dynamic

Reputation
Etc.

Other Google
Services

Search
Drive
Ads
Etc.

SafetyNet
Analysis

Exploit Detection
ACE
SIC
Etc.

Android

App Sandbox
Verified Boot
Encryption

Etc.

Chrome

Smart Lock

Device Manager

Safe Browsing

SafetyNet

Verify Apps

App X App Y

App Z

Install Apps

Apps

Knowledge
PHA or not

Best practices

Knowledge
PHA or not

Apps

Knowledge
Risk Signal

Data
Rare Apps

App Install Checks

Attest API
Protections

Warnings
Configuration changes

Etc

Device Data
Events

Measurements
Configurations

Etc.

Learn More

● https://source.android.com/security/

● Android Security 2015 Annual Report

○ https://security.googleblog.com/2016/04/android-security-2015-annual-report.html

● Android Security State of the Union

○ Black Hat 2015 - Adrian Ludwig

○ https://goo.gl/JrncdF

https://source.android.com/security/
https://source.android.com/security/
https://security.googleblog.com/2016/04/android-security-2015-annual-report.html
https://security.googleblog.com/2016/04/android-security-2015-annual-report.html
https://goo.gl/JrncdF
https://goo.gl/JrncdF

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Android Platform Overview

High Level Overview

Contacts Game X

Google Play

Contacts Game Y

Google Play

System System System System System System System

Trust Zone

Kernel

Hardware

Root Root Root Root Root

User 1 User 2

Verify Apps Safe Browsing

SafetyNetGoogle Security
Services

Email Game Y Email Game Z Device
Manager Smart Lock

Key Android Security Principles

● Exploit Mitigation

● Exploit Containment

● Principle of Least Privilege

● Architectural Decomposition

● Attack Surface Reduction

● Safe by design APIs

● Defense-in-depth

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Software Flaws

PingPong Root (CVE-2015-3636)

● Public Disclosure

○ oss-security

● Presented at Black Hat 2015

○ Wen Xu / @K33nTeam

● Result: Kernel code execution

https://www.blackhat.com/docs/us-15/materials/us-15-Xu-Ah-Universal-Android-Rooting-Is-Back.pdf

diff --git a/net/ipv4/ping.c b/net/ipv4/ping.c
index a93f260..05ff44b 100644
--- a/net/ipv4/ping.c
+++ b/net/ipv4/ping.c
@@ -158,6 +158,7 @@ void ping_unhash(struct sock *sk)
 if (sk_hashed(sk)) {
 write_lock_bh(&ping_table.lock);
 hlist_nulls_del(&sk->sk_nulls_node);
+ sk_nulls_node_init(&sk->sk_nulls_node);
 sock_put(sk);
 isk->inet_num = 0;
 isk->inet_sport = 0;

https://www.blackhat.com/docs/us-15/materials/us-15-Xu-Ah-Universal-Android-Rooting-Is-Back.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Xu-Ah-Universal-Android-Rooting-Is-Back.pdf

PingPong Root (CVE-2015-3636)

commit be341cc348257a07c68bcbfdc526835d49283329
Author: Nick Kralevich <nnk@google.com>
Date: Thu Feb 21 18:36:43 2013 -0800

 init.rc: allow IPPROTO_ICMP support

 Allow userspace programs to create IPPROTO_ICMP sockets.

 This socket type allows an unprivileged program to safely
 send ICMP_ECHO messages and receive the corresponding
 ICMP_ECHOREPLY messages, without relying on raw sockets or
 setuid programs.

● An attempt at security hardening made the vulnerable code reachable

PingPong Root (CVE-2015-3636)

● First priority: Fix the bug!

● Next step: How do we protect against similar bugs?

Solely fixing bugs isn’t
acceptable.

PingPong Root - Mitigation

From: Jeff Vander Stoep <jeffv@google.com>
Date: Tue, 18 Aug 2015 20:50:10 +0100
Subject: [PATCH] arm64: kconfig: Move LIST_POISON to a safe value

Move the poison pointer offset to 0xdead000000000000, a
recognized value that is not mappable by user-space exploits.

Cc: <stable@vger.kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Thierry Strudel <tstrudel@google.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>

 arch/arm64/Kconfig | 4 ++++
 1 file changed, 4 insertions(+)

● Exploit Mitigation - Move LIST_POINTER out of user-space

● Disallow access to unusual socket
families

○ Bluetooth socket family,
AF_MSM_IPC, etc…

○ Backported as CVE-2016-3762.
Android Security Bulletin—July
2016

○ Other common socket families
were blocked in previous Android
versions.

● Whitelist allowable ioctls

Restrict socket ioctls. Either
1. disallow privileged ioctls,
2. disallow the ioctl permission, or
3. disallow the socket class.

neverallowxperm untrusted_app domain:{ rawip_socket
tcp_socket udp_socket } ioctl priv_sock_ioctls;

neverallow untrusted_app *:{ netlink_route_socket
netlink_selinux_socket } ioctl;

neverallow untrusted_app *:{
 socket netlink_socket packet_socket key_socket
 appletalk_socket netlink_firewall_socket
 netlink_tcpdiag_socket netlink_nflog_socket
 netlink_xfrm_socket netlink_audit_socket
 netlink_ip6fw_socket
 netlink_dnrt_socket netlink_kobject_uevent_socket
 tun_socket netlink_iscsi_socket
 netlink_fib_lookup_socket netlink_connector_socket
 netlink_netfilter_socket netlink_generic_socket
 netlink_scsitransport_socket
 netlink_rdma_socket netlink_crypto_socket
} *;

PingPong Root - Mitigations

PingPong Root - TL;DR

PingPong Root: 1 bug, 3 mitigations!

Learn more: http://android-developers.blogspot.com/2016/07/protecting-android-with-more-linux.html

http://android-developers.blogspot.com/2016/07/protecting-android-with-more-linux.html

PingPong Root - Mitigation
● The mitigations are effective at blocking or reducing the severity of a number of unrelated bugs

○ CVE-2016-2059 - Linux IPC router binding any port as a control port

○ CVE-2015-6642 - Security Vulnerability in AF_MSM_IPC socket:
IPC_ROUTER_IOCTL_LOOKUP_SERVER ioctl leaks kernel heap memory to userspace

○ CVE-2016-2474 - Security Vulnerability - Nexus 5x wlan driver stack overflow

○ etc...

Stagefright

● Series of bugs reported by Joshua “jduck” Drake

● Private disclosure with embargo

● Public disclosure via NPR / blog post / PR / ads / etc...

● For this presentation, focusing on CVE-2015-3824

○ MP4 'tx3g' Integer Overflow

https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf

Stagefright - A “successful failure”

● Monthly patching cycle

● Public security bulletins

● No evidence of malicious exploitation

● Exploit mitigations (ASLR, etc) worked as intended and bought time

● Device diversity complicated exploitation and bought time

● Exploit containment (UID sandbox, SELinux) forced vulnerability chaining and bought time

● Widespread patch distribution: 57-89% of population [1]

● Significant architectural improvements (more later)

● Enhanced visibility of Android Vulnerability Rewards Program [1] Source: Zimperium.com, March 22nd, 2016

https://blog.zimperium.com/reflecting-on-stagefright-patches/

Monthly Security Updates to Flagship Android Models (Last 3 months)
OEM Model July 2016 June 2016 May 2016

Samsung

Galaxy S7 Edge 1 1 1

Galaxy S7 1 1 1

Galaxy S6 Edge+ 1 1 1

Galaxy S6 Edge 1 1 1

Galaxy S6 1 1 1

Galaxy Note5 1 1 1

Galaxy Note4 1 1 1

Galaxy A5(2016) 1 1 1

Galaxy S6 Active 1 1 1

Galaxy Note Edge 1 1 1

Galaxy S7 Active 1 1

LGE
V10 1 1 1

LG G5 1 1 1

LG G4 1 1 1

LG G3 1 1 1

Huawei
P9 1 1 1

P8 1 1

Mate S 1 1

Mate 8 1 1

Motorola Moto X Style 1

Moto X Play

Nexus

Nexus 9 1 1 1

Nexus 6P 1 1 1

Nexus 6 1 1 1

Nexus 5X 1 1 1

Nexus 5 1 1 1

Note: Based on active user devices that have installed updates as of August 3, 2016. Updates may not be available for all
versions of these devices, and/or in all regions. Please contact your OEM for details about updates for specific devices.

Stagefright

● Mediaserver architected for containment

○ “Android: Securing a Mobile
Platform from the Ground Up” (Rich
Cannings, Usenix Security 2009)

○ Charlie Miller - oCERT-2009-002

● Stagefright exploit was contained

○ Required vulnerability chaining

● Mediaserver grew up. More features =>
more capabilities

https://twitter.com/jduck/status/756197298355318784

Stagefright

@@ -1948,6 +1948,9 @@ status_t MPEG4Extractor::parseChunk(off64_t *offset, int depth) {
 size = 0;
 }

+ if (SIZE_MAX - chunk_size <= size)
+ return ERROR_MALFORMED;
+
 uint8_t *buffer = new (std::nothrow) uint8_t[size + chunk_size];
 if (buffer == NULL) {
 return ERROR_MALFORMED;

● First Priority: Fix the bugs!

○ 7 patches provided by vulnerability reporter (yay!)

Stagefright

● Unfortunately, fix was incomplete: CVE-2015-3864

 size = 0;
 }

- if (SIZE_MAX - chunk_size <= size) {
+ if ((chunk_size > SIZE_MAX) || (SIZE_MAX - chunk_size <= size)) {
 return ERROR_MALFORMED;
 }

+ if (SIZE_MAX - chunk_size <= size)
+ return ERROR_MALFORMED;
+
 uint8_t *buffer = new (std::nothrow) uint8_t[size + chunk_size];
 if (buffer == NULL) {
 return ERROR_MALFORMED;

CVE-2015-3824

CVE-2015-3864

Stagefright

Solely fixing bugs isn’t
acceptable.

mediaserver - Architectural Improvements

● Mediaserver refactoring

● Integer overflow protections

● ASLR enhancements

○ Increase kernel randomness

○ Link time randomization

● Mediaserver seccomp

● Remove mediaserver execmem

MediaServer

AudioFlinger
AudioPolicyService
CameraService
MediaPlayerService
RadioService
ResourceManagerService
SoundTriggerHwService

AudioServer

AudioFlinger
AudioPolicyService
RadioService
SoundHwTrigger

CamerServer

CameraService

ExtractorService

ExtractorService

MediaCodecService

CodecService

MediaDrmServer

MediaDrmService

MediaServer

MediaPlayingService
ResourceManagerService

Android M - Services per process Android N - Services per process

MediaServer

Audio devices
Bluetooth
Camera Device
Custom Vendor Drivers
DRM hardware
FM Radio
GPU
IPC connection to Camera daemon
mmap executable memory
Network sockets
Read access to app-provided files
Read access to conf files
Read/Write access to media
Secure storage
Sensor Hub connection
Sound Trigger Devices

AudioServer

Audio Devices
Bluetooth
Custom vendor drivers
FM radio
Read/Write access to media

CamerServer

Camera Device
GPU
IPC connections to Camera
daemon
Sensor Hub Connection

ExtractorService

None

MediaCodecService

GPU

MediaDrmServer

DRM hardware
Mmap executable memory
Network sockets
Secure storage

MediaServer

GPU
Network Sockets
Read access to app-provided
files
Read access to conf files

Android M - Capabilities per process Android N - Capabilities per process

mediaserver - Refactoring results

● Vastly improved architectural decomposition

● Vastly improved separation of privileges

● Riskiest code moved to strongly sandboxed process

● Containment model significantly more robust

Everyone is safer!

Stagefright - Integer Overflow Protections

● Majority of stagefright bugs were integer overflow

● In C & C++:

○ For unsigned values: the result is taken modulo 2bits

○ For signed values: the result is undefined

UBSan to the rescue!

Stagefright before patch

Stagefright before patch v1, sanitized

Stagefright after patch v1, sanitized

libstagefright with UBSan

● In Summary:

○ UBSan with original patch: no integer overflow, stops exploit!

○ UBSan with no patch: no integer overflow, stops exploit!

Learn More: https://android-developers.blogspot.com/2016/05/hardening-media-stack.html

https://android-developers.blogspot.com/2016/05/hardening-media-stack.html

ASLR Enhancements

ASLR Patch #1 - Increased randomness from kernel
commit d07e22597d1d355829b7b18ac19afa912cf758d1
Author: Daniel Cashman <dcashman@google.com>
Date: Thu Jan 14 15:19:53 2016 -0800

 mm: mmap: add new /proc tunable for mmap_base ASLR

[deleted]

 Concretely, the attack was against the mediaserver process, which was
 limited to respawning every 5 seconds, on an arm device. The hard-coded
 8 bits used resulted in an average expected success rate of defeating
 the mmap ASLR after just over 10 minutes (128 tries at 5 seconds a
 piece). With this patch, and an accompanying increase in the entropy
 value to 16 bits, the same attack would take an average expected time of
 over 45 hours (32768 tries), which makes it both less feasible and more
 likely to be noticed.

https://lwn.net/Articles/667790/

https://lwn.net/Articles/667790/
https://lwn.net/Articles/667790/

ASLR Patch #2 - Library Load Order Randomization

1.so

2.so

3.so

4.so

1.so

2.so

3.so

4.so

Random base
address

● Compliments and enhances
randomized mmap base address

● Dependent shared libraries are
mapped into memory in random
order

● Effectiveness depends on number
of shared library dependencies

● No impact on initial executable nor
dynamic linker load

https://android-review.googlesource.com/178130

https://android-review.googlesource.com/178130
https://android-review.googlesource.com/178130

ASLR Patch #3 - Random gap between *.so files

1.so

2.so

3.so

4.so

Random base
address

● Checked in 15 days ago. :-)

○ Targeting future Android
release

● Adds more gaps between shared
libraries.

● Allow a lot more compact CFI
shadow implementation

https://android-review.googlesource.com/248499

1.so

2.so

3.so

4.so

https://android-review.googlesource.com/248499
https://android-review.googlesource.com/248499

mediaserver: additional
changes

open("/system/lib/libnetd_client.so",
O_RDONLY) = 3
mmap2(NULL, 12904, PROT_READ|PROT_EXEC,
MAP_PRIVATE, 3, 0) = 0xb6d9f000

open("/data/data/com.foo.bar/libnetd_client.
so", O_RDONLY) = 4
mmap2(NULL, 12904, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_FIXED, 4, 0) = -1 EACCES
(Permission denied)

mmap2(NULL, 20,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, 4, 0) = -1 EACCES
(Permission denied)

finit_module(5, "", 0) = ?
ERESTART_RESTARTBLOCK (Interrupted by
signal)
--- SIGSYS {si_signo=SIGSYS,
si_code=SI_USER, si_pid=20745, si_uid=2000}

+++ killed by SIGSYS +++
Bad system call

● Remove “execmem”

○ No anonymous executable memory

○ No loading executable code from
outside /system (not new in Nougat)

○ Executable content can only come
from dm-verity protected partition

● seccomp enforcement

Stagefright - TL;DR

Stagefright: 7 mitigations!

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Data in Transit Protection

Data In Transit Protection

● The network is not to be trusted.
○ This has always been true but is especially for mobile devices.
○ But you already know this.

● Too much unencrypted traffic

Data In Transit Protection -
Marshmallow

In order to help you accurately and easily
determine if your application is making cleartext
traffic in Marshmallow we added two new
features.

1. Strict mode cleartext detection to help you
while testing.

2. usesCleartextTraffic application manifest
attribute to block accidental regressions
on user devices.

Note: These are not limited to HTTP/HTTPS

StrictMode.VmPolicy policy =

 new StrictMode.VmPolicy.Builder()

 .detectCleartextNetwork()

 .penaltyDeath()

 .build();

 StrictMode.setVmPolicy(policy);

<application

android:usesCleartextTraffic="false" />

Data In Transit Protection

● The network is not safe
○ But you already know that

● Too much unencrypted traffic
● Too much badly encrypted traffic

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=android+x.509

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=android+x.509
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=android+x.509

Badly Encrypted Traffic

● What causes bad encryption bugs?
○ Code testing in non-production environments
○ Third party libraries changing global state
○ Insecure code samples online
○ Connection to legacy servers

Badly Encrypted Traffic

HttpsURLConnection.setDefaultHostnameVerifier(new HostnameVerifier() {

 public boolean verify(String hostname, SSLSession session) { return true; }

});

SSLContext ctx = SSLContext.getInstance("TLS");

ctx.init(null, new TrustManager[] {

new X509TrustManager() {

public void checkClientTrusted(X509Certificate[] chain, String authType) {}

public void checkServerTrusted(X509Certificate[] chain, String authType) {}

public X509Certificate[] getAcceptedIssuers() { return new X509Certificate[]{}; } } }, null);

HttpsURLConnection.setDefaultSSLSocketFactory(ctx.getSocketFactory());

Do not use these code samples!

Network Security Config

● Customizing TLS through the current APIs is too error prone
● Network Security Config: Safer and easier API
● Fine grain blocking of insecure traffic in your app
● Eliminate debugging-related code in your release build

○ Connect to your development infrastructure without any code
○ Avoid writing custom code that removes security for debug builds and accidentally

shipping it
● Limit the CAs you want to trust
● Easy to configure cert pinning

Network Security Config - Block insecure traffic

<network-security-config>

 <domain-config cleartextTrafficPermitted="false">

 <domain includeSubdomains="true">secure.example.com</domain>

 </domain-config>

</network-security-config>

Network Security Config - Debug only CAs

<network-security-config>

 <debug-overrides>

 <trust-anchors>

 <certificates src="@raw/debug_cas"/>

 </trust-anchors>

 </debug-overrides>

</network-security-config>

Network Security Config - Pinning

<network-security-config>

 <domain-config>

 <domain includeSubdomains="true">example.com</domain>

 <pin-set expiration="2018-01-01">

 <pin digest="SHA-256">7HIpactkIAq2Y49orFOOQKurWxmmSFZhBCoQYcRhJ3Y=</pin>

 <!-- backup pin -->

 <pin digest="SHA-256">fwza0LRMXouZHRC8Ei+4PyuldPDcf3UKgO/04cDM1oE=</pin>

 </pin-set>

 </domain-config>

</network-security-config>

Data In Transit Protection - User Installed Certificates

● Question: How should user installed certificates be handled?
○ Opportunity to revisit old assumptions

● App files/memory/processes are protected by default
○ Why not network traffic?

● Interest from nation states
https://www.eff.org/deeplinks/2015/12/kazakhstan-considers-plan-snoop-all-internet-traffic

https://www.eff.org/deeplinks/2015/12/kazakhstan-considers-plan-snoop-all-internet-traffic
https://www.eff.org/deeplinks/2015/12/kazakhstan-considers-plan-snoop-all-internet-traffic

Data In Transit Protection - User Installed Certificates

● Most application developers unaware secure traffic can be intercepted
● User installable certificates not commonly used

Applications targeting “Nougat” or greater no longer trust user installed certs by
default.

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Where do we go from here?

Languages

● Safe by design: As an industry, we need to move towards memory safe languages
○ This includes sacred cows such as the Linux kernel

Bug root cause for all of Android (including kernel and other components)

Invest in Defense

● Invest in defenses: As an industry, we need to look beyond attacks and short term solutions, and
invest in architectural improvements in all these areas:

● Exploit Mitigation
● Exploit Containment
● Principle of Least Privilege
● Architectural Decomposition
● Attack Surface Reduction
● Safe by design APIs
● Defense-in-depth

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Black Hat Sound Bytes

Black Hat Sound Bytes

● Android has a robust, multi-layered defense designed to mitigate

and contain vulnerabilities.

● Android is investing heavily in learning from vulnerabilities and

applying those lessons in new releases.

● Vulnerabilities will never go away, but they can be contained and

managed.

THANK YOU

Nick Kralevich

nnk@google.com

