android

The Art of Defense

How vulnerabilities help shape security features and mitigations in
Android

Nick Kralevich
August 4th, 2016

",i,,,, J“l% N
__I

Mot

S whoami

e Nick Kralevich
e Android Security since December 2009

e Android Platform Security Team Lead

}.

Google Play

Unknown
Sources
Warning

Install
Confirmation

Verify Apps
Consent

Verify Apps
Warning

Runtime
Security Checks

Sandbox &
permissions

Google Play Apps Application Analysis Apps Other Google
> : . Services
Static
< Dynamic
Knowledge Reputation Knowledge Segrch

Install Apps PHA or not Etc. PHA or not Drive
Best practices Ads

Etc.

Knowledge
Risk Signal
Data
& Rare Apps
Smart Lock
Data Knowledge
App installs PHA or Not
Install
L Device Manager Source
Attest API
Protections SafetyNet
0 Warnings q
Safe BrOWSIr]g Configuration changes AnaIySIS
Etc

Android

Exploit Detection

<

>

SafetyNet

ACE

App Sandbox
Verified Boot
Encryption
Etc.

App Install Checks _J
> Verify Apps

SIC
Etc.

>

Device Data
Events
Measurements
Configurations
Etc.

Learn More

e https://source.android.com/security/

e Android Security 2015 Annual Report
o https://security.googleblog.com/2016/04/android-security-2015-annual-report.html

e Android Security State of the Union
o Black Hat 2015 - Adrian Ludwig
o https://goo.gl/JrncdF

https://source.android.com/security/
https://source.android.com/security/
https://security.googleblog.com/2016/04/android-security-2015-annual-report.html
https://security.googleblog.com/2016/04/android-security-2015-annual-report.html
https://goo.gl/JrncdF
https://goo.gl/JrncdF

High Level Overview

User 1 Google Play User 2 Google Play Google Security SafetyNet

Services

Trust Zone
Kernel

Hardware

Device

Smart Lock
Manager

Key Android Security Principles

e Exploit Mitigation

e Exploit Containment

e Principle of Least Privilege

e Architectural Decomposition
e Attack Surface Reduction

e Safe by design APIs

e Defense-in-depth

PingPong Root (CVE-2015-3636)

P Public Disclosure diff --git a/net/ipv4/ping.c b/net/ipv4/ping.c
index a93f260..05ff44b 100644
o oss-security --- a/net/ipvé4/ping.c
+++ b/net/ipv4/ping.c
° Presented at Black Hat 2015 @@ —158,§ +158,7 @@ void ping unhash (struct sock *sk)
if (sk_hashed(sk)) {
write lock bh(&ping table.lock);
o Wen Xu/ @K33nTeam hlist nulls del (¢§sk->sk nulls node) ;
. + sk _nulls node init(&sk->sk nulls node);
e Result: Kernel code execution sock_put (sk) ;
isk->inet num = 0;
isk->inet sport = 0;

https://www.blackhat.com/docs/us-15/materials/us-15-Xu-Ah-Universal-Android-Rooting-ls-Back.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Xu-Ah-Universal-Android-Rooting-Is-Back.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Xu-Ah-Universal-Android-Rooting-Is-Back.pdf

PingPong Root (CVE-2015-3636)

An attempt at security hardening made the vulnerable code reachable

commit be341cc348257a07c68bcbfdc526835d49283329
Author: Nick Kralevich <nnk@google.com>
Date: Thu Feb 21 18:36:43 2013 -0800

init.rc: allow IPPROTO ICMP support
Allow userspace programs to create IPPROTO ICMP sockets.
This socket type allows an unprivileged program to safely

send ICMP ECHO messages and receive the corresponding

ICMP ECHOREPLY messages, without relying on raw sockets or
setuid programs.

PingPong Root (CVE-2015-3636)

e First priority: Fix the bug!

e Next step: How do we protect against similar bugs?

Solely fixing bugs isn’t
acceptable.

PingPong Root - Mitigation

e Exploit Mitigation - Move LIST_POINTER out of user-space

From: Jeff Vander Stoep <jeffv@google.com>
Date: Tue, 18 Aug 2015 20:50:10 +0100
Subject: [PATCH] arm64: kconfig: Move LIST POISON to a safe value

Move the poison pointer offset to 0xdead000000000000, a
recognized value that is not mappable by user-space exploits.

Cc: <stable@vger.kernel.org>

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Thierry Strudel <tstrudellgoogle.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>

arch/armé64/Kconfig | 4 ++++
1 file changed, 4 insertions(+)

PingPong Root - Mitigations
e Disallow access to unusual socket

families

o Bluetooth socket family,
AF_MSM_IPC, etc...

o Backported as CVE-2016-3762.
Android Security Bulletin—July
2016

o Other common socket families
were blocked in previous Android
versions.

e Whitelist allowable ioctls

android

Restrict socket ioctls. Either

1. disallow privileged ioctls,

2. disallow the ioctl permission, or
3. disallow the socket class.

#
#
#
#

neverallowxperm untrusted app domain:{ rawip socket
tcp_socket udp socket } ioctl priv_sock ioctls;

neverallow untrusted app *:{ netlink route socket
netlink selinux socket } ioctl;

neverallow untrusted app *:{
socket netlink socket packet socket key socket
appletalk socket netlink firewall socket
netlink tcpdiag socket netlink nflog socket
netlink xfrm socket netlink audit socket
netlink ip6fw socket
netlink dnrt socket netlink kobject uevent socket
tun_socket netlink iscsi socket
netlink fib lookup socket netlink connector socket
netlink netfilter socket netlink generic_socket
netlink scsitransport socket

netlink rdma socket netlink crypto socket

* .
’

PingPong Root - TL;DR

PingPong Root: 1 bug, 3 mitigations!

Learn more: http://android-developers.blogspot.com/2016/07/protecting-android-with-more-linux.html

http://android-developers.blogspot.com/2016/07/protecting-android-with-more-linux.html

PingPong Root - Mitigation

e The mitigations are effective at blocking or reducing the severity of a number of unrelated bugs
o CVE-2016-2059 - Linux IPC router binding any port as a control port

o CVE-2015-6642 - Security Vulnerability in AF_MSM_IPC socket:
IPC_ROUTER_IOCTL_LOOKUP_SERVER ioctl leaks kernel heap memory to userspace

o CVE-2016-2474 - Security Vulnerability - Nexus 5x wlan driver stack overflow

o etc...

Stagefright

e Series of bugs reported by Joshua “jduck” Drake

e Private disclosure with embargo

e Public disclosure via NPR / blog post / PR/ ads / etc...
e For this presentation, focusing on CVE-2015-3824

o MP4 'tx3g' Integer Overflow S

https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf

Stagefright - A “successful failure”

e Monthly patching cycle

e Public security bulletins

e No evidence of malicious exploitation

e Exploit mitigations (ASLR, etc) worked as intended and bought time

e Device diversity complicated exploitation and bought time

e Exploit containment (UID sandbox, SELinux) forced vulnerability chaining and bought time
e Widespread patch distribution: 57-89% of population

e Significant architectural improvements (more later)

e Enhanced visibility of Android Vulnerability Rewards Program [1] Source: Zimperium.com, March 22nd, 2016

https://blog.zimperium.com/reflecting-on-stagefright-patches/

Monthly Security Updates to Flagship Android Models (Last 3 months)

OEM

Model

Galaxy S7 Edge
Galaxy S7
Galaxy S6 Edge+
Galaxy S6 Edge

July 2016

June 2016

Galaxy S6
Samsung Galaxy Note5
Galaxy Note4
Galaxy A5(2016)
Galaxy S6 Active
Galaxy Note Edge
Galaxy S7 Active
v1io
L G E LG G5
LG G4
LG G3
P9
H . P8
uawel Mate S
Mate 8
Moto X Style
Motorola Moto X play
Nexus 9
Nexus 6P
N exus Nexus 6

Nexus 5X

Nexus 5

Note: Based on active user devices that have installed updates as of August 3, 2016. Updates may not be available for all
versions of these devices, and/or in all regions. Please contact your OEM for details about updates for specific devices.

May 2016

Stagefright

e Mediaserver architected for containment

o “Android: Securing a Mobile

meterpreter > # boom! we are now inside the mediaserver process executing in mem

Platform from the Ground Up” (Rich e "

| Unknown command:

Cannings, Usenix Security 2009) g s i R

Server username: uid=1013, gid=1013, euid=1005,
meterpreter > # however... mediaserver 1is limited both by its privileges (which

. . are pretty high honestly) and SELinux policy
o Charlie Miller - oCERT-2009-002 o

Unknown command :
meterpreter > # we cant even read the shell...
Unknown command: #

L Stagef”ght eXp|0it was Contained mefer)reter > download./system/bin/sh sh
[-] stdapi fs_stat: Operation failed: 1

o Required vulnerability chaining meterpreter > + |
https://twitter.com/jduck/status/756197298355318784

e Mediaserver grew up. More features =>
more capabilities

Stagefright

First Priority: Fix the bugs!

O

7 patches provided by vulnerability reporter (yay!)

@@ -1948,6 +1948,9 @@ status_t MPEG4Extractor::parseChunk(off64 t *offset, int depth)
size = 0;

}

+ if (SIZE MAX - chunk size <= size)
return ERROR MALFORMED;

+

uint8 t *buffer = new (std::nothrow) uint8 t[size + chunk size];

if (buffer == NULL) {
return ERROR MALFORMED;

{

Stagefright

e Unfortunately, fix was incomplete: CVE-2015-3864

+ if (SIZE MAX - chunk size <= size)
+ return ERROR MALFORMED;
CVE-2015-3824 * , , , ,
uint8 t *buffer = new (std::nothrow) uint8 t[size + chunk size];
if (buffer == NULL) {

return ERROR MALFORMED;

size = 0;
}
CVE-2015-3864 = if (SIZE MAX - chunk size <= size) {
+ if ((chunk size > SIZE MAX) || (SIZE MAX - chunk size <= size)) {

return ERROR_MALFORMED;
}

Stagefright

Solely fixing bugs isn’t
acceptable.

mediaserver - Architectural Improvements

Mediaserver refactoring

e Integer overflow protections

e ASLR enhancements
o Increase kernel randomness
o Link time randomization

e Mediaserver seccomp

e Remove mediaserver execmem

Android M - Services per process Android N - Services per process

MediaServer AudioServer MediaServer

AudioFlinger AudioFlinger MediaPlayingService

AudioPolicyService AudioPolicyService ResourceManagerService

CameraService RadioService

MediaPlayerService SoundHwTrigger

RadioService

ResourceManagerService

SoundTriggerHwService MediaCodecService MediaDrmServer

:> CodecService MediaDrmService

CamerServer ExtractorService
CameraService ExtractorService

e

Android M - Capabilities per process

MediaServer

Audio devices

Bluetooth

Camera Device

Custom Vendor Drivers

DRM hardware

FM Radio

GPU

IPC connection to Camera daemon
mmap executable memory
Network sockets

Read access to app-provided files
Read access to conf files
Read/Write access to media
Secure storage

Sensor Hub connection

Sound Trigger Devices

Android N - Capabilities per process

AudioServer

Audio Devices

Bluetooth

Custom vendor drivers

FM radio

Read/Write access to media

MediaServer

GPU

Network Sockets

Read access to app-provided
files

Read access to conf files

MediaCodecService

MediaDrmServer

GPU DRM hardware
Mmap executable memory
Network sockets
Secure storage
CamerServer ExtractorService
Camera Device NEme
GPU
IPC connections to Camera
daemon

Sensor Hub Connection

mediaserver - Refactoring results

e Vastly improved architectural decomposition
e Vastly improved separation of privileges
e Riskiest code moved to strongly sandboxed process

e Containment model significantly more robust

Everyone is safer!

Stagefright - Integer Overflow Protections

e Majority of stagefright bugs were integer overflow

9999 9E |
° RNDLL ||

e InC&C++:
o For unsigned values: the result is taken modulo 2°"

o For signed values: the result is undefined

9
N 000[E
RNDL L |

UBSan to the rescuel!

—

Stagefright before patch

case FOURCC('t', 'x', '3', 'g'):

{
uint32_t type;
const void *data; BLX j__ENK7android8MetaData8findDataEjPjPPKvS1_
size_t size = 0; CMP RO, #1
if (ImLastTrack->meta->findData(ITE NE
kkeyTextFormatData, &type, &data, &size)) { STRNE R7, [SP,#0x30]
size = 0; LDREQ R7, [SP,#0x30]
- »
3 LDR R6, [SP,#0x28]
ADDS RO, R7, R6
: . 5 " BLX _ZInaj ; operater new([] (uint)
uint8_t *buffer = new uint8_t[size + chunk_size]; MOV R8, RO
CBZ R7, loc_T7E&RA6
if (size > 8) { LDR R1, [SP, #0x40]
memcpy(buffer, data, size); MOV RO, RE&
} MOV R2, R7
BLX __aeabi_memcpy

Stagefright before patch v1, sanitized

& s & SRR ELX j__ZNK7android8MetaData8findDataEjPiPPKvS1_
casé’ Fougccl ", “xl,. 3%, g i RO, #1
{ ITE NE
. n STRNE R7, [SP,#0x38]
u1nt32_t-EypE, LDREQ R7, [SP,#0x38]
LUI!.’:t LA ‘Uﬂtﬂ, MOV Rs' RS
size_t size = 0; LDRD . W R5, R1, [SP,#0xF0]
if (!mLastTrack->meta->findData(el v
kKeyTextFormatData, &type, &data, &size)) { ADDS RO, R7, RS
size = 0; ADC.W R1, R1, #0
cMP RO, R7
1 IT cc
Movee R3, #1
uint8_t *buffer = new uint8_t[size + chunk_size]; ?rmnx RL, #0
MOVNE R3, R2
if (size > @) { cMP R3, #0
buff dat - . EBNE.W call_abort
HEHEPY(UTEEr, ata, S'LZE), BLX _Znaj ; operator new[] (uint)
} MOV R6, RO
CBZ R7, loc_81F62
LDR R1, [SE,#0x3C]
MOV RO, R6
MOV R2, R7
BLX __aeabi_memcpy

Stagefright after patch v1, sanitized

BLX j__EZNK7android8MetaData8findDataEjPjPPEVSL_
CBNZ RO, loc_81F2A
STR RS, [SP,#0x38]
loc_81F2A ; CODE XREF: .text:00081F2617
case FOURCC('t', 'x', '3', 'g'): s o o it
{ BNE.W call_abort
uint32 t type; LDR RS, [SP,#0xF0]
. NEGS RO, R1
const void *data; LDR R7, [SP, #0x38]
size_t size = 6; Movs R2, #0
3 g MVNS R3, RS
if (!mLastTrack->meta->findData(cMP R3, RT
kKeyTextFormatData, &type, &data, &size)) { 1}‘;‘-'1_: R3, #0
size = 0; MOVLS R3, #1
} cMP RO, #0
MOV .W RO, #0
ITT EQ
if (SIZE_MAX - chunk_size <= size) { mg ;g. g
return ERROR_MALFORMED; oMP RO, #0
} BNE.W return_ERROR_MALFORMED
—ADDE RU, K7, K5
MOV .W R3, #0
uint8_t *buffer = new uint8_t[size + chunk_size]; ADC.W R1, R1, #0
cMP RO, R7
T cc
if (size > @) { Movee R3, #1
memcpy(buffer, data, size); ?T‘P“ R1, #o
} MOVNE R3, R2
cMP R3, #0
BNE.W call_abort
BLX _Znaj ; operator new[] (uint)
MoV RE, RO
CBZ R7, loc_81F86
LDR R1, [SP,#0x3C]
MOV RO, R6
MOV R2, R7
BLX __aeabi_memcpy

libstagefright with UBSan

e |n Summary:
o UBSan with original patch: no integer overflow, stops exploit!

o UBSan with no patch: no integer overflow, stops exploit!

Learn More; https://android-developers.blogspot.com/2016/05/hardening-media-stack.html

https://android-developers.blogspot.com/2016/05/hardening-media-stack.html

ASLR Enhancements

Randomize

ASL

R Patch #1 - Increased randomness from kernel

commit d07e22597d1d355829b7bl8acl%9afa912c£758d1l
Author: Daniel Cashman <dcashman@google.com>
Date: Thu Jan 14 15:19:53 2016 -0800

mm: mmap: add new /proc tunable for mmap base ASLR
[deleted]

Concretely, the attack was against the mediaserver process, which was
limited to respawning every 5 seconds, on an arm device. The hard-coded
8 bits used resulted in an average expected success rate of defeating
the mmap ASLR after just over 10 minutes (128 tries at 5 seconds a
piece). With this patch, and an accompanying increase in the entropy
value to 16 bits, the same attack would take an average expected time of
over 45 hours (32768 tries), which makes it both less feasible and more
likely to be noticed.

android

https://lwn.net/Articles/667790/

https://lwn.net/Articles/667790/
https://lwn.net/Articles/667790/

ASLR Patch #2 - Library Load Order Randomization

ndom base

e Compliments and enhances <j Raaddress

randomized mmap base address

e Dependent shared libraries are
mapped into memory in random
order

e Effectiveness depends on number
of shared library dependencies

e No impact on initial executable nor
dynamic linker load

https://android-review.googlesource.com/178130
android

https://android-review.googlesource.com/178130
https://android-review.googlesource.com/178130

ASLR Patch #3 - Random gap between *.so files

e Checked in 15 days ago. =) - Ragggfrgsbsase

o Targeting future Android
release

e Adds more gaps between shared
libraries.

e Allow alot more compact CFlI
shadow implementation

3.s0

https://android-review.googlesource.com/248499
android

https://android-review.googlesource.com/248499
https://android-review.googlesource.com/248499

mediaserver: additional
changes

e Remove “execmem”
o No anonymous executable memory

o No loading executable code from
outside /system (not new in Nougat)

o Executable content can only come
from dm-verity protected partition

® Sseccomp enforcement

android

open ("/system/1lib/libnetd client.so",

O RDONLY) = 3

mmap2 (NULL, 12904, PROT READ|PROT EXEC,
MAP PRIVATE, 3, 0) = 0xbo6d9f000

open ("/data/data/com.foo.bar/libnetd client.
so", O RDONLY) = 4

mmap2 (NULL, 12904, PROT READ|PROT EXEC,

MAP PRIVATE|MAP FIXED, 4, 0) = -1 EACCES
(Permission denied)

mmap2 (NULL, 20,
PROT_READIPROT_WRITEIPROT_EXEC,

MAP PRIVATE |MAP_ANONYMOUS, 4, 0) = -1 EACCES
(Permission denied)

finit_module (5, "", 0) = ?

ERESTART RESTARTBLOCK (Interrupted by
signal)

-—— SIGSYS {si signo=SIGSYS,

si code=SI USER, si pid=20745, si uid=2000}

+++ killed by SIGSYS +++
Bad system call

Stagefright - TL;DR

Stagefright: 7 mitigations!

Data In Transit Protection

e The network is not to be trusted.
o This has always been true but is especially for mobile devices.
o Butyou already know this.

e Too much unencrypted traffic

Data In Transit Protection - e MRy ey =

new StrictMode.VmPolicy.Builder()
.detectCleartextNetwork()

Marshmallow

.penaltyDeath()
In order to help you accurately and easily .build();
determine if your application is making cleartext StrictMode.setvmPolicy (policy);

traffic in Marshmallow we added two new
features.

1. Strict mode cleartext detection to help you

while testing.
2. usesCleartextTraffic application manifest
attribute to block accidental regressions cepelfesitien
on user devices. android:usesCleartextTraffic="false" />

Note: These are not limited to HTTP/HTTPS

android

Data In Transit Protection

e The network is not safe
o Butyou already know that
e Too much unencrypted traffic
e Too much badly encrypted traffic

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=android+x.509
Search Results

‘There a(e,141531E entries that match your search.
o

Name Description

CVE-2015-5717 The Siemens COMPAS Mobile application before 1.6 for Android does not properly verify X.509

certificates from SSL servers, which allows man-in-the-middle attackers to spoof servers and obtain
sensitive information via a crafted certificate.

CVE-2015-3610 The Siemens HomeControl for Room Automation application before 2.0.1 for Android does not verify
X.509 certificates from SSL servers, which allows man-in-the-middle attackers to spoof servers and

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=android+x.509
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=android+x.509

Badly Encrypted Traffic

e What causes bad encryption bugs?
o Code testing in non-production environments
o Third party libraries changing global state
o Insecure code samples online
o Connection to legacy servers

Badly Encrypted Traffic

Do not use these code samples!

HttpsURLConnection.setDefaultHostnameVerifier(new HostnameVerifier() {
public boolean verify(String hostname, SSLSession session) { return true; }

})s

SSLContext ctx = SSLContext.getInstance("TLS");
ctx.init(null, new TrustManager[] {
new X509TrustManager() {
public void checkClientTrusted(X509Certificate[] chain, String authType) {}
public void checkServerTrusted(X509Certificate[] chain, String authType) {}
public X509Certificate[] getAcceptedIssuers() { return new X509Certificate[]{}; } } }, null);
HttpsURLConnection.setDefaultSSLSocketFactory(ctx.getSocketFactory());

android

Network Security Config

Customizing TLS through the current APlIs is too error prone
Network Security Config: Safer and easier API
Fine grain blocking of insecure traffic in your app
Eliminate debugging-related code in your release build
o Connect to your development infrastructure without any code
o Avoid writing custom code that removes security for debug builds and accidentally
shipping it
e Limit the CAs you want to trust
e Easy to configure cert pinning

Network Security Config - Block insecure traffic

<network-security-config>
<domain-config cleartextTrafficPermitted="false">
<domain includeSubdomains="true">secure.example.com</domain>
</domain-config>
</network-security-config>

Network Security Config - Debug only CAs

<network-security-config>
<debug-overrides>
<trust-anchors>
<certificates src="@raw/debug _cas"/>
</trust-anchors>
</debug-overrides>
</network-security-config>

Network Security Config - Pinning

<network-security-config>
<domain-config>
<domain includeSubdomains="true">example.com</domain>
<pin-set expiration="2018-01-01">
<pin digest="SHA-256">7HIpactkIAq2Y490rFO0QKurWxmmSFZhBCoQYcRhJI3Y=</pin>

<!-- backup pin -->
<pin digest="SHA-256">fwza@LRMXouZHRC8Ei+4PyuldPDcf3UKg0/04cDM1oE=</pin>
</pin-set>

</domain-config>
</network-security-config>

Data In Transit Protection - User Installed Certificates

e Question: How should user installed certificates be handled?
o Opportunity to revisit old assumptions
e App files/memory/processes are protected by default
o Why not network traffic?
e Interest from nation states
https://www.eff.org/deeplinks/2015/12/kazakhstan-considers-plan-snoop-all-internet-traffic

DECEMEBER 10, 2013 | BY BILL BUDINGTOMN AND EVA GALPERIN u ﬂ %J =

Kazakhstan Considers a Plan to Snoop on all Internet Traffic

In an unusually direct attack on online privacy and free speech, the ruling regime of Kazakhstan appears
to have mandated the country's telecommunications operators to intercept citizens' Internet traffic using a
government-issued certificate starting on January 1, 2016. The press release announcing the new
measure was published last week by Kazakhtelecom JSC, the nation's largest telecommunications
company, but appears to have been taken down days later—the link above comes courtesy of the

https://www.eff.org/deeplinks/2015/12/kazakhstan-considers-plan-snoop-all-internet-traffic
https://www.eff.org/deeplinks/2015/12/kazakhstan-considers-plan-snoop-all-internet-traffic

Data In Transit Protection - User Installed Certificates

e Most application developers unaware secure traffic can be intercepted
e User installable certificates not commonly used

Applications targeting “Nougat” or greater no longer trust user installed certs by
default.

Languages

e Safe by design: As an industry, we need to move towards memory safe languages
o This includes sacred cows such as the Linux kernel

Bug root cause for all of Android (including kernel and other components)

@ Integer overflow
@ Non-heap buffer overflow

@ Memory safety bugs
@ Race condition
@ Other

@ Heap buffer overflow

@ Missing bounds check

@ Incorrect bounds checlk
@ Uninitialized data

@ Use after free

@ Missing NULL check

@ Wemory corruption (other)
@ Race condition

@ Uncaught exception

@ Pending intent

@ Missing permission check

Invest in Defense

e Investin defenses: As an industry, we need to look beyond attacks and short term solutions, and
invest in architectural improvements in all these areas:
e Exploit Mitigation
Exploit Containment
Principle of Least Privilege
Architectural Decomposition
Attack Surface Reduction
Safe by design APIs
Defense-in-depth

Black Hat Sound Bytes

e Android has a robust, multi-layered defense designed to mitigate
and contain vulnerabilities.

e Android is investing heavily in learning from vulnerabilities and
applying those lessons in new releases.

e Vulnerabilities will never go away, but they can be contained and

managed.

THANK YOU

Nick Kralevich

oooooooooooooo

