

• Introduction

• API Deobfuscation Method
• Memory Access Analysis for Dynamic

Obfuscation

• Iterative Run-until API method for Static
Obfuscation

• Implementation

• Demo

• Conclusion

Outline

• Malwares hide functionalities by API
obfuscation
• Commercial packers obfuscate API functions

• Malware authors have their own API obfuscator

• No deobfuscation tools for some modern
packers
• x64 packers

• Custom packers

Why API deobfuscation matters?

• Dynamic API Obfuscation
• API functions are obfuscated during runtime

• Instructions and addresses changes every run

API obfuscation techniques in
modern packers

Branch into a newly allocated block
during execution time
(obfuscated User32.dll :MessageBox)

• Static API Obfuscation
• API functions are obfuscated compile(packing)

time

• Instructions and addresses are the same

API obfuscation techniques in
modern packers

……

Branch into other section

API Call by ‘ret’ instruction

• After deobfuscation, we have
• (Near) original entry point

• Recovered API function calls at OEP

• With the deobfuscated image, we can do
• Static analysis with disassembled and

decompiled code

• Dynamic analysis with debuggers

API Deobfuscation Goal

• How to deobfuscate API obfuscated
binaries?
• Dynamic API Obfuscation

Memory Access Analysis

• Static API Obfuscation
 Iterative Run-until-API Method

• How to evade anti-debugging?
• Dynamic binary instrumentation (Intel Pin)

• Anti-anti-debugger plugin in debuggers

• Emulators

API Deobfuscation Methods

• Memory Access Analysis
• Relate memory reads on API function code and

corresponding memory writes on obfuscated
code
• Instruction addresses of obfuscated API function
 Original API function

• Recover original API function by the obfuscated
call target address

API Deobfuscation
for Dynamic Obfuscators

• What happens during runtime obfuscation?
• Runtime obfuscator reads each function,

obfuscates each instruction, writes the
obfuscated code into a newly allocated memory

• Each function is obfuscated in sequence

Dynamic Obfuscation Process

Reading
Ws2_32.bind

Writing
obfuscated

Ws2_32.bind

Reading
Ws2_32.
connect

Writing
obfuscated

Ws2_32.
connect

• How can we identify the original API function?
• Record every memory write before the next API

function or DLL reads

• Limit the number of memory write for the last
API function

Memory Access Analysis

Write Addresses before
next API function reads

Obfuscated Function
Instruction Addresses

Obfuscated
API call target

address

• Find OEP
• Record every memory write and execute

• OEP is the Last written address that is executed

• Check written memory blocks (1 block = 4
Kbytes) to save memory

• OEP is in the original executable file sections

How to find OEP

Packed
Section

Additional
Section by

Packer

Unpacked
Section

Additional
Section by

Packer

Unpack code is
executed

Unpacked
instruction
is written

Execution address
Of written blocks

• Search for intermodular calls at OEP by
pattern matching
• Matched patterns may contain false positives

• After target address resolution, misinterpreted
instruction disappears

Obfuscated Call Identification

• Direct call resolution
• If the call targets are in the constructed map

from obfuscated addresses to API function,
modify call targets to the original API function
address

• Generate a text file that contains resolved API
function calls and OEP

Obfuscated Call Resolution

• Indirect call resolution
• Original segments (.text, .idata, …) are merged

into one segment by packing

• Identify a memory block that contains
successive obfuscated API function addresses

• Modify obfuscated call addresses in the IAT
candidate with the original API function

Obfuscated Call Resolution

• Example: API Deobufscation Information

Obfuscated Call Resolution

Addresses are in RVA

• Generating a debugger script to resolve API
calls
• The text file generated by the memory access

analyzer contains OEP, resolved obfuscated
addresses

• Implemented a python script to generate a
debugger script that execute until OEP and
resolve obfuscated addresses

Debugging Deobfuscated Binary

• Debugging x86 binary with Ollydbg after
running deobfuscation script

Reversing with API Deobfuscator

• Decompiled code with dumped file

Reversing with API Deobfuscator

• Static obfuscation pattern at OEP
• Obfuscated call pattern

• “Call qword ptr [___]” is changed into
“Call rel32” when obfuscated

• Obfuscated call run into API function
• Stack shape is preserved

• API call instruction and the first few instructions in
the API function are obfuscated

• After executing obufscated instructions, execution
reaches an instruction in the original API function

API Deobfuscation
for Static Obfuscators

• Search obfuscated call by pattern
• CALL rel32 – is a candidate

• Check whether the address is in another section
of the process

Obfuscated Call Identification

Call rel32; db 00
‘00’ after call break alignment
so thataA few incorrect disassembled
code occur

……

• Obfuscated code is executed until API
function

• Run-until-API method
• Change RIP into candidate API call address

• Run until API function

Obfuscated Call Resoultion

……

Obfuscated Call Start

Execute until API address is met

• Integrity check
• We need to check whether the stack pointer

and the stack content is preserved after
executing obfuscate call

Obfuscated Call Resolution

Check Stack &
Return Address

Check
Stack Pointer

• Apply run-until API method repeatedly on
candidate obfuscated calls
• Save context & Restore

Iterative run-until-API Method

….

• Iterative run-until-API method can be applied
to various packers
• VMP: API function call is virtualization-

obfuscated

• Themida64: API function call is mutated

• Obsidium: The first few instructions in an API
function are obfuscated

• Custom packers

• But, at last, execution is redirected into a real
API function

Iterative run-until-API Method

• Debugging x64 binary with x64DBG after
deobfuscation

Reversing with API Deobfuscator

Run correctly with resolved API call

• Dumping x86/64 binary and static analysis
with IDA Pro

Reversing with API Deobfuscator

IAT recovered

API call recovered

• Pin tool to resolve API Address
• Windows 8.1/7 – 32/64 bit (on VMWare)

• Visual Studio 2013

• Intel Pin 2.14

• Python script to patch obfuscated call

• Reversing tools
• X64dbg

• IDA

Implementation Detail

Deobfuscation Process

API
Resolver

Debugger
script

Generator

Debugging
with

x64dbg &
Olly

dumped
exe file

Static
Analysis

with IDA Pro

API info
dbg
script

• Packed 32/64 bit samples

• Commercial packer packed 32bit malware

Reversing Packed Binary with
API Deobfuscator

• Suggested two methods for API
deobfuscatoin
• Memory access analysis for dynamic

obfuscation

• Run-until-API method for static obfuscation

• Commercial packer protected binary can be
analyzed using API deobfuscator
• Using debugger

• Using disassembler & decompiler

Conclusion

• Depending on DBI tools
• Packers can detect DBI tools

• Defeating the transparency feature of DBI (BH US’14)

• Ex) Obsidium detect Intel Pin as a debugger

• DBI tools crash in some applications

• Static whole function obfuscated code
cannot be deobfuscated
• No instructions in the original API function is

executed when the whole function is obfuscated

Limitation

• Anti-anti-debugging
• Building x86/64 emulator for unpacking

• API function resolution
• Code optimization and binary diffing for static

whole function obfuscation

• Backward dependence analysis for custom
packers

Future Work

